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Flow between a stationary and a rotating 
disk with suction 
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The equations for the viscous flow between two coaxial infinite disks, one stationary 
and the other rotating, are solved numerically. The effects of applying a uniform 
suction through the rotating disk are determined. Initially, the fluid and disks are at  
rest. The angular velocity of one disk and the amount of suction through it are gradu- 
ally increased to specific values and then held constant. At large Reynolds numbers 
R, the equilibrium flow approaches an asymptotic state in which thin boundary layers 
exist near both disks and an interior core rotates with nearly constant angular velocity. 
We present graphs of the equilibrium flow functions for R = lo4 and various values 
of the suction parameter a (0 < a < 2). When a = 0, the core rotation rate w, is 
0.3131 times that of the disk. Fluid near the rotating disk is thrown centrifugally 
outwards. As a increases, w, increases and the centrifugal outflow decreases. When 
a > 1.3494, the core rotation rate exceeds that of the disk and the radial flow near 
the rotating disk is directed inwards. We also present accurate tabular results for two 
flows of special interest: (i) the flow between a stationary and a rotating disk with 
no suction (a = 0) and (ii) Bodewadt flow. The latter can be obtained by suitable 
scaling of the boundary-layer solution near the stationary disk for any a 2 0. Since 
several solutions t o  the steady-state equations of motion have been reported, the 
question arises as to whether other solutions to the time-dependent equations of 
motion with zero initial conditions can be found. We exhibit a rotational start-up 
scheme which leads to an equilib7ium solution in which the interior fluid rotates in a 
direction opposite to that of the disk. 

1. Introduction 
The study of the flow of a viscous incompressible fluid between two infinite rotating 

disks is of both theoretical and practical importance. The problem’s origins lie in the 
investigation offlow above a single rotating disk. Von KBrmBn (1921), by assuming the 
axial velocity to be independent of the radius, reduced the Navier-Stokes equations 
for the steady flow due to a rotating disk to a set of ordinary differential equations; 
these have been solved numerically by Cochran (1934) and by many others. Bodewadt 
(1940) obtained a numerical description of the flow over a stationary plane when the 
fluid infinitely far away from it is in a state of solid-body rotation. Batchelor (1951) 
extended the discussion to a family of rotationally symmetric flows whose members 
are distinguished by the ratio of the angular velocity of the fluid at infinity to that of 
the disk. For non-negative values of this ratio, Rogers & Lance (1960) solved the 
flow equations numerically. The effects of suct,ion through the rotating disk were 
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considered by Stuart (1954), Rogers & Lance (1960), Evans (1969), Ockendon (1972) 
and Bodonyi (1975); Kuiken (1971) investigated the effects on the flow of blowing 
through the disk. 

An extension of von Karrnhn’s analysis will also reduce to ordinary differential 
equations the Navier-Stokes equations for steady rotationally symmetric flows 
between two infinite coaxial disks, either or both of which may have a uniform suction 
through its surface (Batchelor 195 1). Time-varying flow can also be considered, 
both for the two-disk problem (Pearson 1965; H. P .  Greenspan 1968) and for the 
single-disk problem (Benton 1966). The two-disk problem has been studied extensively 
both theoretically and numerically, particularly in the steady-state case with no 
suction through the disks. The nature of the steady flow when the disks are counter- 
rotating, especially when they are rotating with the same speed but in the opposite 
sense, has provoked a number of investigations, not all of which are in agreement. 
Among these are studies by Batchelor (1951), Stewartson (1953), Lance & Rogers 
(1962), Pearson (1965), Tam (1969), D. Greenspan (1972), McLeod & Parter (1974) 
and Matkowsky & Siegmann (1976). Less attention has been paid to the case of disks 
co-rotating with non-zero angular velocities, possibly because early conjectures 
(Batchelor 1951; Stewartson 1953) about the character of this flow were in agreement. 
Some computations have been made by Lance & Rogers (1962). 

I n  this paper we discuss the remaining case, in which one disk is a t  rest and the 
other rotates. We are particularly interested in the large Reynolds number solution 
when there is a uniform suction through the rotating disk. The solution for this case 
when no suction is present has received much attention in the literature. Lance & 
Rogers ( 1  962) solved the steady-state equations for Reynolds numbers up to  R = 441. 
Pearson (1965), for Reynolds numbers as large as R = lo3, studied the time evolution 
of the flow from an impulsive start with zero initial conditions. Steady-state calcula- 
tions were made by Benton (1968) up to R = 2500 and by Cooper & Reshotko 
(1975) for R = 2852. These computations all indicate that the fluid, except for that 
in thin layers near each disk, rotates a t  a uniform angular velocity intermediate 
between those of the two disks. 

It appears that the equations may have other solutions as well. Mellor, Chapple & 
Stokes (1968) and Roberts & Shipman (1976) presented numerical evidence that for 
a single Reynolds number many steady-state solutions are possible. The validity of 
some of these, known as multiple-cell solutions, has been questioned (Parter 1977, 
private communication). Nevertheless, more than one single-cell solution seems to 
exist. Watts (1974) made an asymptotic analysis of various such solutions. 

From a theoretical standpoint, the question of the existence of solutions to two-disk 
flow problems has not yet been settled, let alone that of uniqueness. Progress con- 
cerning the existence of solutions has been made by Hastings (1970), McLeod & 
Parter (1974) and Elcrat (1975). McLeod & Parter (1974, 1977) presented some 
rigorous discussions about the behaviour of solutions. For the related problem in which 
both disks are a t  rest and there is suction or blowing through the disks, Elcrat (1976) 
has demonstrated both existence and uniqueness. 

I n  our work, which is primarily concerned with the effect on the flow of a uniform 
suction through the rotating disk, we consider the full time-dependent problem 
rather than the steady-state equations discussed by most authors. The fluid and disks 
are initially a t  rest; the angular velocity of one disk and the amount of suction through 
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it are gradually increased to specified values and then held constant. I n  a sense this 
complements the impulsive-start problem of Pearson ( 1965). We shall present results 
only for the flow which exists after the disk velocity and the suction have been held 
constant for a long time. We call this the equilibrium flow, to distinguish it from the 
solution obtained from the steady-state equations of motion. It is possible also to 
consider the time evolution of the flow, but we shall not do so here. Our numerical 
scheme is a general one for solving a coupled system of nonlinear second-order partial 
differential equations with one space variable and one time variable. It involves 
Galerkin's method in space using B-splines, and an extrapolated backwards Euler 
scheme in time. 

We obtained solutions for Reynolds numbers between R = lo2 and R = lo4. 
Since our computations and those of others leave little doubt about the asymptotic 
nature of the solution for large Reynolds numbers, we present results only for R = lo4. 
For the rotational start-up scheme described, we find that thin boundary layers exist 
a t  both disks and are separated by a core region which rotates a t  a nearly uniform 
non-zero angular velocity w,. As the suction through the rotating disk increases, the 
boundary layers become thinner while the interior rotation rate increases and can 
even exceed that of the disk. 

Since our numerical scheme permits automatic computation of the equilibrium 
solution to a specified accuracy, we also present accurate results in tabular form for 
two flows of interest: (i) that between a stationary and a rotating disk with no suction 
and (ii) Bodewadt flow (obtained from the boundary-layer solution near the stationary 
disk). 

The question as to whether other solutions to the steady-state equations of motion 
can actually be obtained from the full time-dependent equations of motion with zero 
initial conditions is discussed briefly. A rotational start-up scheme is exhibited which 
leads to an equilibrium solution in which the interior fluid rotates in a direction opposite 
to that of the disk. 

2. Equations of motion 
We study the viscous flow between two parallel infinite disks. Initially, the fluid 

and the disks are a t  rest. At time t = 0, one disk is set in motion, its angular velocity 
being gradually increased to a value Q and then held constant. Suction is also applied 
to the rotating disk a t  t = 0 and is gradually increased to a specified level, after which 
it is held constant. The equilibrium solution to this time-dependent problem may be 
obtained by considering the flow after the angular velocity and suction have been 
held constant for a long time. 

For axisymmetric flow of an incompressible fluid, the continuity equation and the 
Navier-Stokes equations are written in dimensionless form in cylindrical co-ordinates 
as 

(ru), + (YW,) = 0,  

vt + v,u + uv/r + v,w = R-'(v, + vJr  + vzz - v/r2), 

wt + w,u+ wzw = -p--lp, + R-l(w,, + w,/r + zu,,). 

(2.1) 

u,+u,u-v2/r+u,w = - p - ~ ~ r + R - 1 ( ~ , + u , / r + ~ , , - u / r 2 ) ,  (2.2) 

(2.3) 

(2.4) 
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Here R = dQ/v is the Reynolds number, where d is the disk spacing and v is the 
kinematic viscosity. Distance, time, velocity and pressure divided by density have 
been normalized with respect to d, Q-l, Qd and respectively. The subscripts 
denote partial derivatives. 

If the axial velocity w is assumed to have the form w = R-iH(t, z) ,  then the following 
system of equations must be satisfied: 

$z = 0,  2F + R-iH, = 0,  (2.51, (2 .6)  

Ft = G 2 - F 2 - R ~ i F , H - # + R - 1 & ,  (2.7) 

G,  = - 2FG - R-iG, H -+ R-IG,,, (2.8) 

Ht = - R-iH, H - R-iQ,, + R-IH,,, (2 .9 )  

u = rF(t, z ) ,  = rG(t, z ) ,  w = R-)H(t, z ) ,  (2.10)-(2.12) 
where 

p-lp = &'#(t) + R-lQ,(t, 2). (2 .13)  

After the velocity functions F, G and Hand the radial pressure function $ have been 
determined from the sixth-order coupled system (2 .5) - (2 .8) ,  the axial pressure func- 
tion Q, can be obtained from (2 .9 ) .  In  fact, in the equilibrium limit, Q, can be written 
explicitly in terms of F and H .  We shall thus concern ourselves only with the solution 
of (2. a>-( 2.8). 

If the rotating disk is located a t  z = 0 and the stationary disk is at z = 1 in the 
normalized co-ordinate system, then the boundary conditions corresponding to no- 
slip flow with uniform suction through the rotating disk are 

(2.14) 

The angular-velocity function w ( t )  and the suction function a(t)  2 0 are prescribed. 
The normalization is such that w ( t )  will have a value of unity at large values of t and 
a(t) will tend to a value a, termed the suction parameter. We chose functions o(t) 
and a(t) which increase very slowly, rising linearly from zero at t = 0 to their final 
values a t  t = R4. After that time, all boundary conditions are constant. 

1 F(t,  0) = 0, G(t,  0) = w( t ) ,  H ( t ,  0) = -a(t) ,  

F(t, 1 )  = G(t, 1 )  = H(t ,  1 )  = 0. 

Initially, the fluid is at rest and we have 

F(O,Z)  = G ( 0 , z )  = H(O,z )  = $ ( O )  = 0. (2 .15 )  

I n  order to obtain an equilibrium solution, we computed out to the very generous 
time t = 100R4, then refined the spatial mesh in the manner described in the next 
section and computed out to the final time tf = 200R4. The program allowed large 
time steps to be taken when the solution changed little with time and, indeed, very 
large time steps were taken after the boundary conditions had been held constant for 
a while. 

3. Method of numerical solution 
We used a FORTRAN software package POST (Partial and Ordinary differential 

equation solver in Space and Time) which is designed to solve a coupled system of 
nonlinear second-order partial differential equations which are a function of one space 
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and one time variable, and associated ordinary differential equations which are a 
function of time. The POST package is built upon the PORT library of portable 
FORTRAN subprograms for numerical mathematics (Fox, Hall & Schryer 1976) and 
will ultimately be an offering in that library. 

The numerical method used in the POST routine is described elsewhere (Schryer 
1976). In  brief, the Rayleigh-Ritz-Galerkin method is used to project each component 
of the solution vector u(t, z )  a t  a given instant of time onto the space spanned by B- 
splines. (These are piecewise polynomials of a specified degree which are defined on 
a specified spatial mesh and which satisfy certain continuity conditions a t  the mesh 
points.) A computationally convenient basis for such a space exists. This method 
reduces the partial differential equations in space and time to ordinary differential 
equations in time for the coefficients Uji(t) in the expansion 

u,(t, z )  = z U,i(t) B&), (3.1) 
i 

where the B,(z) are the B-spline basis functions. These ordinary differential equations 
are then solved by a linearized backwards Euler method. 

The routine is capable of automatically computing the solution to a specified accuracy. 
The user specifies how accurately the solution in time is to be computed and the 
routine automatically determines the sizes of the time steps needed to maintain that 
accuracy. We also modified the routine to enable the user to specify an error tolerance 
for the equilibrium solution. The modified routine automatically refines the spatial 
mesh to obtain a solution with that accuracy. 

For our problem, we specified that the solution should be approximated by cubic 
B-splines, i.e. by piecewise polynomials of degree less than or equal to three. We usually 
computed each function to an accuracy of 0.1 yo relative to its maximum absolute value. 

One of the elegant features of the POST routine is its ability to use a non-uniform 
spatial mesh for the B-splines. This is particularly important in our problem since at  
large Reynolds numbers the solution changes rapidly in thin boundary layers near 
the disks. I n  the interior, however, the solution is nearly constant. If the flow functions 
were to be approximated accurately by functions defined on a uniform mesh, the mesh 
would have to be quite fine and computations would be relatively expensive. However, 
if a non-uniform mesh is used, it can be made finer where the solution varies rapidly 
and coarser where it varies slowly. 

The construction of the spatial mesh and the procedure for refining it automatically 
are peculiar to this specific problem and are not included in the description of the 
general-purpose POST routine (Schryer 1976). We feel that it is worthwhile to discuss 
these matters in some detail here. 

After some experimentation, we discovered that the widths of the boundary layers 
near the rotating and stationary disks could be parameterized as functions of the 
Reynolds number R and the suction parameter a. The boundary layer on the stationary 
disk is approximately four times as thick as that on the rotating disk, in agreement 
with results of Reshotko & Rosenthal (1971). For sufficiently large R, the thickness 
varies as R-*, as many investigators have shown. As will be discussed in 4 [see equa- 
tions (4.1) and (4.2)], we found empirically that the thickness also varies as (2i)-a. 
We specified the thickness of the boundary layer on the rotating disk to be 

6 = 5R-*(2+)-a. (3.2) 
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The 3-spline mesh was parameterized to have M equally spaced points in each of 
the intervals [O ,  61 and [S, 1-48] and 4 M  points in the interval [I -48, I]. There is 
a conjecture that the numerical stability (condition) of the B-spline basis degenerates 
as e p ,  where p is the ratio of the largest and the smallest mesh spacing. Our experience 
is consistent with this conjecture. On a Honeywell HIS-6000 computer, in double 
precision (18 decimal digits) the time step once went to zero in the solution process. 
We then realized that in that instance e p  M l0l3 and there were insufficient digits in 
the computer solution. Thus for large R we altered the mesh specification and used 
enough points in the middle interval [&,I - 461 to keep p < 10. These extra points are 
not needed for accuracy in that region, but rather to keep the scheme numerically 
stable. 

With this parameterization of the B-spline mesh, we still needed to determine what 
value of M to use to obtain an equilibrium solution with a specified accuracy. We 
accomplished this automatically in the following manner. We first solved the equations 
using a small value of M ,  eventually obtaining an approximation to the equilibrium 
solution. We then refined the mesh by increasing M to approximately $ the first 
value, used the former approximate equilibrium solution as an initial condition and, 
with very little additional computation, obtained a better approximate equilibrium 
solution. 

We then used a PORT (Fox et al. 1976) library facility (EEBSF) to estimate the 
error in a B-spline approximation to a function. Given two different numerical solu- 
tions, on different B-spline meshes (one of which is finer than the other), the sub- 
program EEBSF can be used to estimate the error in each approximate solution. 
For reasons which we shall not discuss here, the error estimate for the solution deter- 
mined on the coarser mesh is extremely reliable, but that determined on the finer 
mesh is rather unreliable. Thus we base all computations on the error estimate for 
the coarse solution. With the aid of the subprogram EEBSF, we obtain a reliable 
estimate of the error E, in the coarse equilibrium solution. 

Now the rate of convergence of the solution in space is O(hk), where h is the mesh 
spacing and k = 4 is the order of the B-spline (de Boor 1968). We may write 

(3.3) 

where u, is the coarse solution, C is an unknown constant and h, is the maximum coarse 
mesh spacing. We wish to determine the ‘optimal’ mesh spacing needed for an error 
E in the equilibrium solution. Since 

Ec = IIu-ucll = Ch2, 

E = JIU - u,JJ = Cht, 
we obtain from (3.3) and (3.4) 

and 

(3.4) 

(3.5) 

where M, is the value of M for the coarse mesh and Mo is the value for the ‘optimal’ 
mesh. Thus, with two approximate solutions in hand, we may estimate the ‘optimal’ 
number of mesh points to be used in approximating the solution in space. We then 
solve (2.5)-(2.8) with M = M,, using the previous approximate equilibrium solution 
as an initial condition. In  order to get a n  accurate error estimate for this solution, we 
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z 

0.000 
0.004 
0.008 
0.012 
0.016 
0.020 
0.024 
0-028 
0.032 
0.036 
0.040 
0.044 
0.048 
0.052 
0.056 
0.060 
0.064 
0.068 
0.072 
0.076 
0.080 
0.084 
0.088 
0.092 
0.096 
0.100 

0-150 
0.200 
0.250 
0.300 
0.350 
0.400 
0.450 
0.500 
0.550 
0.600 
0-650 
0.700 
0.750 
0*800 
0.850 
0.900 
0.950 
1.000 

F 
0~0000 
0.1275 
0.1680 
0.1628 
0.1377 
0.1073 
0.0789 
0.0553 
0.0372 
0.0239 
0.0148 
0.0086 
0.0047 
0.0023 
0.0009 
0.0002 

- 0~0002 
- 0.0003 
- 0.0003 
- 0.0003 
- 0*0002 
- 0*0002 
- 0~0001 
- 0*0001 
- 0~0001 

0~0000 

0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
o*oooo 
0~0000 
0~0000 
0~0000 
0~0000 
0~0001 

- 0.000 1 
- 0~0001 

0.0017 
- 0.0079 

0,0252 
- 0.0279 

0~0000 

cf 

1~0000 
0.7982 
0.6310 
0.5072 
0.4225 
0.3683 
0.3358 
0.3179 
0.3090 
0.3056 
0.3050 
0.3059 
0.3072 
0.3086 
0.3098 
0.3108 
0.3116 
0.3122 
0.3125 
0.3128 
0.3129 
0.3130 
0.3131 
0.3131 
0.3131 
0.3131 

0.3131 
0.3131 
0-3131 
0.3131 
0.3131 
0.3131 
0.3131 
0.3131 
0.3131 
0.3131 
0-3131 
0.3133 
0.3124 
0.3147 
0.3120 
0.2993 
0.4007 
0~0000 

H 
o*oooo 

- 0.0586 
- 0.1810 
-0.3152 
- 0.4362 
- 0.5342 
- 0.6085 
-0.6618 
- 0.6985 
- 0.7226 
- 0.7378 
- 0.7470 
- 0.7522 
- 0.7549 
- 0.7562 
- 0.7566 
- 0.7565 
- 0.7563 
- 0.7561 
- 0.7558 
- 0.7556 
- 0.7554 
- 0.7553 
- 0,7552 
- 0.7552 
- 0.7551 

- 0.7551 
- 0.7551 
- 0,7551 
- 0.7551 
- 0.7551 
- 0.7551 
- 0.7551 
- 0.7551 
- 0.7551 
- 0.7550 
- 0.7551 
- 0.7555 
- 0.7528 
- 0.7629 
- 0.7392 
- 0.7538 
- 1.0209 

0~0000 

TABLE 1. The zero-suction solution: R = lo4 and a = 0. The values of the derivatives F2 and 
G, a t  z = 0 and 1 are given in the text. 

refine the mesh by a factor of approximately + and find a solution once more. If the 
error is still not small enough, we repeat the process. This scheme has worked efficiently 
and well for all data sets studied. When R = lo4, Mo ranged from Mo = 12 for a = 1 
to Mo = 27 for a = 0 when the error was specified to be 0.1%. 
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FIGURE 1. The equilibrium profiles of (a) F ,  ( b )  0 and ( c )  H ;  
R = 104; a = 0,  +, 3,  1. 

4. Results 
We performed computations with Reynolds numbers R = lo2, lo3 and lo4 and 

with various values of the suction parameter a in the range 0 < a < 2. For all such 
values of a, our conclusions about the equilibrium flow dependence on R are in com- 
plete agreement with the results discussed in some detail by Benton (1968) and by 
Reshotko & Rosenthal (1971) for the case a = 0. Accordingly, we present graphical 
results here only for the fully asymptotic case R = lo4. After comparing our results 
for the case a = 0 with those of others, we shall concern ourselves primarily with the 
dependence of the equilibrium flow on the suction parameter. 

Figures 1 (a) ,  ( b )  and ( c )  display the equilibrium profiles of the radial, angular and 
axial functions for a = 0, 4, Q and 1 with R = lo4. Each function was computed to an 
accuracy of 0.1% relative to its maximum absolute value. When there is no suction 
(a  = 0 ) ,  well-developed boundary layers exist near both disks and are separated 
by a core region in which the motion is very nearly that of a rigid body. Near the 
rotating disk, the fluid is drawn towards the disk (figure 1 c) and is thrown centrifugally 
outwards (figure la). In the core region, the ffuid swirls towards the rotating disk 
(figures 1 b, c ) .  The interior rotation rate is 0-3131 that of the disk (figure 1 b) .  The flow 
exhibits an oscillatory nature in the boundary layer near the stationary disk. Regions 
of inward and outward swirling flow are present; the predominant flow, which is 
closest to the stationary disk, is one of inward swirling. Some of the ffuid rotates faster 
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-3'0 ; 

-2 .5  . 

2 

FIGURE 2. The equilibrium profiles of (a) F ,  (b )  (7 and (c) H ;  R = lo4; a = l+, 13, 2. 
Note that the scales differ from those in figure 1.  

than that in the core region. Axially (figure 1 c ) ,  the fluid moves rapidly away from the 
stationary disk, then slows down somewhat as it enters the core region. Our computa- 
tions indicate, incidentally, that an oscillatory behaviour is also present to a lesser 
extent near the rotating disk. 

Pearson's (1965) equilibrium solutions, which were computed for R = lo2 and lo3 
with no suction through the rotating disk, and our (unillustrated) results for R = lo2 
and lo3 and a = 0 are in agreement except for slight numerical differences. The steady- 
state solutions of Lance & Rogers (1962), obtained for Reynolds numbers up to 
R = 441, those of Benton (1968) for R = 2500 and those of Cooper & Reshotko (1 975) 
for R = 2852 are also consistent with our equilibrium results (a = 0). 

Although our equilibrium solutions for R = lo2 and a = 0 and the steady-state 
computations of D. Greenspan (1972) are in good agreement, our results for R = lo3 
are distinctly different. However, t.he fact that Greenspan's computer results are in- 
correct for the case of disks rotating with the same speed but in the opposite sense has 
been established analytically (McLeod & Parter 1974; Schultz & Greenspan 1974). 
There is also evidence (Nguyen, Ribault & Florent 1975) that his results are incorrect 
for the problem at hand. We suspect that the inaccuracy for large R is due to his having 
used 50 uniformly spaced mesh points in the integration interval, independent of R, 
even though the boundary layers are very thin a t  large values of R. 

We are, we believe, the first to carry out numerical computations to R = lo4. In 
table 1 ,  we present accurate results for the case R = lo4 and a = 0. Our claim that 
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@ 
0.0980 
0.1614 
0.2866 
0.5288 
0.9717 
1.7327 
2.9605 

TABLE 2. The pressure function @ for various values of the suction parameter a. 

each function is accurate to 0.1 % relative to its maximum absolute value is probably 
quite conservative. We also find that c(0) = 47.3, G,(O) = -52.4, Fz(l) = 16.5 and 
G,(l) = - 13.5. Solutions for these functions at other (sufficiently large) values of R 
may be obtained by scaling the thicknesses of the boundary layers and the solutions 
within them by R-4. The magnitudes of P, C and H remain the same. We do not 
tabulate the solution near the stationary disk at very many vaIues of 2 because it 
can also be obtained by suitable scaling of the Bodewadt solution, which appears 
later in table 3. 

Returning to figures 1 (a),  ( b )  and (c ) ,  we observe that increasing the suction causes 
the fluid in the interior to rotate more rapidly and to flow more rapidly towards the 
rotating disk. In  fact, if a is large enough, the rotation rate w, of the core is larger than 
that of the rotating disk, as is illustrated in figures 2 (a) ,  ( b )  and (c). 

Both boundary layers become thinner as a increases. Near the stationary disk, the 
oscillatory nature of the flow becomes more pronounced. The flow description in the 
boundary layer near the rotating disk differs according to whether the interior rotation 
rate is smaller or larger than that of the disk. If it is smaller, then near the disk the 
fluid is thrown centrifugally outwards. As the amount of suction increases, the radial 
outflow decreases. When a = 1.3494, the interior rotation rate matches that of the 
disk and the boundary layer vanishes. AS the amount of suction and the interior 
rotation rate increase further, the boundary layer reappears, but the radial flow is an 
inward flow. 

The numerical results for the equilibrium value of $, which appears in the pressure 
function (2.13), are given in table 2 (R = lo4, a varying). It has been suggested heuris- 
tically (Reshotko & Rosenthal 1971) and has recently been shown rigorously (Parter 
1977, private communication) that, in the limit of large R, $4 tends to w,, the angular 
velocity of the core. To the accuracy of our computations, we have equality: o, = $1 
when R = lo4 for all values of a considered. 

Incidentally, the formula 

@,(a) = w,(O) (29)a,  w,(O) = 0.3131, (4.1) 

which is strictly empirical, is accurate to better than 4% for 0 < a < 2. 
Traditionally, the solutions to two single-disk flow problems have been matched 

to yield a solution to the two-disk problem. Batchelor (1951) considered the flow 
between a rotating and a stationary disk ( R  large, a = 0) and proposed that near either 
disk the solution behaves like a suitably scaled version of the solution to the appro- 
priate problem for a single rotating or stationary disk when the fluid is rotating at  
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5 B  

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11.0 
11.5 
12.0 
12.5 
13.0 
13.5 
14.0 
14-5 
15.0 
15.5 
16.0 
16.5 
17.0 
17-5 
18.0 
18.5 
19.0 
19-5 
20.0 

40.0 
60.0 
80.0 

100.0 

P 
0*0000 

- 0.3486 
- 0.4787 
- 0.4496 
- 0.3287 
- 0.1762 
- 0.0361 

0-0663 
0.1226 
0.1371 
0.1210 
0.0878 
0.0499 
0.0162 

- 0.0084 
- 0.0223 
- 0.0268 
- 0.0243 
-0.0179 
- 0.0102 
- 0.0033 

0.0018 
0.0047 
0.0067 
0.0052 
0.0038 
0.0022 
0.0008 

- 0.0003 
- 0~0010 
-0*0012 
- 0.001 1 
- 0.0008 
- 0.0005 
- 0*0002 

0~0001 
0.0002 
0.0002 
0~0002 
0-0002 
0.000 1 

0~0000 
o*oooo 
0~0000 
0-0000 

c f  

0~0000 
0.3834 
0.7354 
1.0133 
1.1923 
1-2721 
1.2713 
1.2182 
1.1412 
1.0640 
1.0016 
0.961 1 
0.9427 
0.9420 
0.9530 
0.9692 
0-9857 
0.9990 
1.0077 
1.0118 
1.0121 
1.0099 
1.0065 
1-0030 
1.0002 
0-9984 
0.9975 
0.9974 
0.9979 
0.9986 
0.9993 
0.9999 
1.0003 
1.0005 
1.0005 
1*0004 
1.0002 
1.0001 
1~0000 
0.9999 
0.9998 

1~0000 
1~0000 
1~0000 
1*0000 

H 
0~0000 

- 0.1944 
- 0.6241 
- 1.0987 
- 1.4928 
- 1.7458 
- 1.8496 
- 1.8308 
- 1.7325 
- 1.5995 
- 1.4685 
- 1.3632 
- 1.2944 
- 1.2619 
- 1.2589 
- 1.2751 
- 1,3003 
- 1.3263 
- 1.3476 
- 1.3617 
- 1.3683 
- 1.3689 
- 1.3654 
- 1.3600 
- 1.3546 
- 1.3500 
- 1.3469 
- 1.3455 
- 1.3454 
- 1.3460 
- 1.3471 
- 1.3483 
- 1.3492 
- 1.3499 
- 1.3502 
- 1.3503 
- 1.3501 
- 1.3499 
- 1.3496 
- 1.3494 
- 1.3493 

- 1.3494 
- 1.3494 
- 1.3494 
- 1.3494 

TABLE 3. The Bodewadt solution as a function of the dimensionless distance 6~ from the 
stationary disk: R = lo4 and a = 1.3494. The values of the derivatives Fc, and Gcs at <B = 0 
are given in the text. 

infinity. The rotation rate a t  infinity in both single-disk problems corresponds to 
that in the core region in the two-disk problem and must be determined as part of 
the matching process. It is found by requiring the axial inflow far from the single 
rotating disk to  equal the axial outflow far from the single stationary disk. This 
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FIGURE 3. The equilibrium profiles of (a) F,  (b )  G and (c) H for R = lo3, a = 0 
and the rotational start-up scheme discussed in 85. 

matching procedure was implemented by Lance & Rogers (1962) for R = 441, but 
with only moderate success since IC was not large enough. The method was also 
discussed by H. P. Greenspan (1968). Reshotko & Rosenthal (1971) obtained more 
reliable results by using a matching lwocedure which invoked conservation of angular 
momentum as well as conservation of mass. For a different, but related, problem, 
McLeod & Parter (1974) showed rigorously that similar heuristic arguments about 
matching are correct. 

Even though there is no need to obtain the two-disk flow solutions for a > 0 
directly by such a matching procedure, the concept is still useful. For example, if R 
is sufficiently large, then for any a 2 0 the flow near the stationary disk is a scaled 
version of Bodewadt flow (Bodewadt 1940). Let FB(cB), G B ( c B )  and H ( c B )  represent 
the solution to Bodewadt’s problem, where cB measures distance from the stationary 
disk and GB+ 1 far from the disk. Then if w, is the core angular velocity in a two-disk 
solution, the boundary-layer solution near the stationary disk should scale as follows 
(Reshotko & Rosenthal 1971): 

F = w$FB, G = wcGB, H = W ~ H R ,  c =  w,BgB. (4.2) 

Our computational results do scale in such a manner. Hence knowledge of the matching 
procedure helps to explain why the boundary layer near the stationary disk becomes 
thinner and the oscillatory nature of the flow becomes more pronounced as the suction 
is increased. 
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That w, increases with a is also understandable: increased suction results in an 
increased axial inflow to the boundary layer near the rotating disk. Since this boundary- 
layer solution is to be matched to a scaled Bodewadt solution, it follows from (4.2) 
that w, must increase. 

We used (4.2) and our computations for R = lo4 and a = 0 to determine that 
w, = 1 when a = 1.3494. A subsequent computation with this value of a and with 
R = 104 yielded the Bodewadt solution, which is tabulated in table 3 a3 a function 
of l&. In  our notation CB = R4( 1 - z ) .  Hence the dimensionless variable L& = z*(w/v)4 ,  
where z* represents the dimensional distance from the stationary disk. The solution 
is accurate to a t  least 0.1%. The results extend those found in Schlichting (1968). 
We also find that l$.JO) = 0.942 and Cc,(0) = 0.773. 

5. Other solutions 
A variety of numerical solutions have been obtained for the steady-state flow 

between a rotating and a stationary disk. Some (Mellor et al. 1968; Roberts & Shipman 
1976) are multiple-cell solutions, for which the axial velocity vanishes on one or more 
planes parallel to the disks. However, Parter (1977, private communication) has 
recently shown analytically that if R is sufficiently large at least some of these 
multiple-cell solutions are not possible. 

Mellor et al. also found other single-cell solutions. (Their results, which are for a = 0, 
presumably can be extended to the case a > 0.) One wonders whether a solution other 
than that exhibited in the preceding section can be obtained as an equilibrium solution 
to the time-dependent equations of motion. Do different rotational start-up schemes 
lead to different solutions? 

We experimented briefly with schemes in which both disks rotated. We first 
gradually counter-rotated the disk at z = 1 (which is ultimately to be at rest) up to 
some designated speed and held it there until the flow reached equilibrium in the 
manner discussed previously. We tried counter-rotation rates one-tenth and one- 
twentieth of that finally achieved by the disk a t  z = 0. Then, again using an R4 ramping 
time, we returned the disk a t  z = 1 to rest and brought the disk at z = 0 up to its 
normalized speed of unity. Finally, in a manner similar to that discussed earlier, we 
computed for an additional 200R4 time units. The final equilibrium results were the 
aame in both instances and are shown in figures 3 ( a ) ,  ( b )  and ( c ) .  The computations 
were performed with R = lo3 and with a specified error tolerance of 1.0%. Notice 
that all of the fluid except that in a boundary layer near the rotating disk has an 
angular velocity opposite in direction to that of the disk. This solution appears to be 
in reasonable agreement with that shown by Mellor et al. (after suitable renormalization) 
in figure 5 of their paper (for R = - 958, in their notation). 

Our work is by no means exhaustive, but it does demonstrate that more than one 
equilibrium solution to the time-dependent equations of motion can be found. Whether 
rotational schemes exist which lead to other solutions remains an open question. 

A question which should be given serious consideration is whether (and, if so, 
under what circumstances) these idealized flows represent an adequate approximation 
to the real flows in a finite disk configuration. Even though the solutions may be 
correct from an analytical point of view, it appears to us that some, such as the 
count,er-rot,ating solution discussed above, may be physically unacceptable. 
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